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I INTRODUCTION

The U. S. Army Atmospheric Sciences Laboratory (ASL) maintains a systems-level
code, IMTURBI, which is used to calculate propagation statistics for optical systems
operating within the atmospheric boundary layer. The code contains an environment
module and a propagation module. The environment module estimates the height-
dependent turbulence level; the inner scale, and the outer scale as a function of me-
teorological variables. The propagation module uses the environmental parameters to
predict the effects of propagation along extended paths within the turbulent region.
The propagation model is based on a 1976 propagation code developed by Fried {1].
The basic parameters computed are (1) the log-amplitude variance, (2) the receiver co-
herence diameter for long- and short-term averages, (3) the isoplanatism effective path
length, and (4) the scintillation averaging length [2].

Fried’s model is based on the Rytov approximation, which formally restricts the
results to small amplitude fluctuations. Nonetheless, the Rytov approximation is at-
tractive because the propagation parameters can be computed in terms of comparatively
simple path intzgrals. Over the past few decades, however, considerable progress has
been made in the (heory of wave propagation in random media, particularly under the
narrow-angle scatter approximation. Thus, it is no longer necessary to accept the limi-
tations of the Rytov approximation. Indeed, the linear systems approach to modeling
imaging systems leads to image degradation measures that are expressed in terms of the
mutual coherence function, which is amenable to exact evaluation. The linear systems
model is reviewed in the appendix to this report.

The report proper describes a new propagation module that will allow the IM-
TURBI code to accommodate essentially unrestricted propagation disturbance levels,
while preserving the compact path-integral formulation. In work performed under a
previous contract, the Shkarofsky spectral density function model was used to derive an
analytic form for the phase structure function that retains explicit inner and outer scale
cutoff parameters [3]. This provides an efficient method for computing the complete
mutual coherence function (MCF) in place of the single-parameter characterization that
is currently used in the IMTURBI model. For plane and spherical waves this is easily
done because the MCF admits a simple analytic characterization in terms of a path
integral over the phase structure function. For beam waves, the corresponding path
integral is nested in a two-dimensional integral that must be evaluated numerically

or approximated. An approximation proposed by Ishimaru is used for the proposed
propagation module.

To provide a consistent framework for computing the effects of long and short in-
tegration times, a scheme proposed by Fante has been implemented in which the low-
frequency spectral contribution is removed before the structure function is computed.




Thus, the same basic theoretical/computational framework can be used for all the prop-
agation parameters. The shori-term results are incorporated as correction factors to the
long-term structure function with the necessary numerical integrations approximated by

a set of polynomial functions. This allows efficient computation within the propagation
module.

For completeness we have repeated some earlier material describing the general
solution to the parabolic wave equation for the mutual coherence function (Section 11)
and the Shkarofsky spectral form that is used to model the phase structure function
(Section III). We then review the specific forms of the mutual coherence function that
are proposed for plane, spherical, and beam waves (Section IV). Section V describes
the medifications for short integration times. The results form a complete and consis-

tently formulated propagation module, which can be integrated into the IMTURB code
framework.

To provide some guidelines for interpreting the theoretical results, a numerical simu-
lation has been implemented as was recently done by Martin and Flatté [4]. To translate
the results to imaging systems, how=ver, the simulated beamn wave field was refocused
to a point. Several measures of the averaged refocused beam degradation were then

computed to evaluate both short-term and long-term beam degradations. These results
are described in Section VI.




II BACKGROUND

Propagation of light in the atmospheric boundary layer is governed by the parabolic
wave equation

2ika—(g;§£) + ViU'(r) + K& (r)U'(r) = 0, (1)
where
u(r) = U'(r) exp{ikz}. (2)

For scintillation studies, one typically assumes that the relative permittivity, ¢, , consists
of a locally invariant component plus a purely random perturbation; however, it is
instructive to accommodate an explicit secular variation, whereby

€1 = El + &, (3)

with & representing the slowly varying background component. As a first step in
isolating the effzcts of &, let

U'(r) = U(r) exp{iv(r)}. (4)

One approach attempts to identify 9 as a ray-optics component, in which case it has

both real and imaginary components as does the diffractive component U. 1t is simpler,
however, Lo define 9 as the solution to

Oy(r)

o = k& (r)y(r). (5)
By substituting (3) and (4) into (1) and using (5), it is readily shown that
2zk—a—z- = ViU - (Viy)U = k*&U. (6)

Now assume that [Vi9| << |V]U/U|, whereby the y-dependent term in (6) can be
neglected, and U itself satisfies the parabolic wave equation.

It follows that solutions to the parabolic wave equation based only on the homo-
geneous random field & omit the effects of slow phase variation induced by . ITn an
imaging system, this phase variation will cause a small, slowly varying displacement of
the image. Such effects, however, are often attributed to the low-frequency componeut
of the homogeneous turbulence. Indeed Fried has used the Rytov phase to compute
the mean-square linear slope for homogeneous turbulence as a measure of the average
image displacement. Based on the results presented in Scclion VI, however, we belicve
that this component is too small to account for the observed beam wander for weak



propagation disturbances. To properly interpret the beam wander, the inhomogeneous
contribution must be modeled separately and incorporated explicitly as in (4).

Either way, the most important quantity for predicting the systems effects of atmo-
spheric turbulence is the mutual coherence function, which is delined as

I(Ap;z,pc) =<U(pc + Bp/2,2)U"(pc — Bp[2,2)>, (7)

where the angle brackets denote ensemble averaging, Ap = p' - p, and p, = (p -+ p')/2.

Under conditions that are readily satisfied for most applications, it can be shown that
I' satisfies the differential equation

o+ (91, - 91+ B0 - a@o) r@sisp) =0, ®

where A(Ap) is the autocorrelation function of the refractive index perturbation. Thus,
insofar as the scattering medium is concerned, it is only necessary to model the structure
function D.(Ap) = 2(A(0) — A(Ap)). Closed-form solutions can be obtained for point

sources and the limiting case of plane waves. Good approximations are also available
for beams as summarized in Section IV.2.




III PHASE STRUCTURE FUNCTION

I11.1 General Results

As discussed in Section II, the solutions to the parabolic wave equation for the complex
moments of U can be formulated in terms of the phase structure function. Thus, the
phase structure function is fundamental in any propagation modeling effort. Consider a

_ rectangular coordinate system with the z axis along the direction of propagation. The
phase path integral for a distance [, is given as

b
- ="k [ &p,z)d. (9)
The phase autocorrelation function can be computed from (9) as
bl
' — L2 't !
<8$68'>= k /0 /0 <&(p, 2)&(p, )> dzdz'. (10)

For homogeneous statistics,
<k&'>= B (Ap,Az). (1)

By using (11) and performing a straightforward change of variables in (10), one obtains
{

- <8p68'>= kL, /: " (1= |Az|/L) B.(Ap, Az)dAz. (12)
4

For almost all applications, the correlation distance along z is small compared to I, in
which case the integral in (12) can be replaced by

. ABp)= [ B8, 82)dAe (13)

—00

Let us now define the spectral density function (SDF) as

<T>(K,k,)=(—2—37)—3 J[] Botp, As)expi-i(K - 8p 4 kD)) dBpdz.  (14)

The overbar is used to denote SDFs normalized as in (14) rather than as in the alter-
native definition that places the (27)® term in the denominator of the complementary
spectral integral. If the SDF is isotropic, it is readily shown that

) A(Ap) = (2n)? /0 " To(K Dp)B (KK dK. (15)




The refractive index n is related to € as

n = —:-=ﬁ\/1+é,zﬁ(1+%). (16)
0

It follows that 4R, = R,. Thus, the structure function for the refractive index is given
as

Du(dp) = 5(4(0) - A(p))
= on? /ow(l-—Jo(KAp))(i,(K)KdK. (17)

It is convenient to define a spectral shape function Q(g) such that

[ olagt s =1, (19)
With .
i e f? 4

§,(K) =<i®> n) (19)

it follows that )
/ / / &,(k) dk =<&?> . (20)

We note that the structure function occurs naturally in gaussian random field theory.

Let U(p) = exp{idp(p)}, where & is a gaussian process. It follows from the properties
of gaussian variables that

YU = exp{~3 <(8(o) - B(s))>)
= exp{-K,Da(Ap)}. (21)

Indeed, (21) is the mutual coherence function for a plane wave propagating in a ho-
mogeneous random medium; however, this occurs because the diffraction effects that

modulate the complex diffracted wave field average to unity in the average coherence
computation.

IT1.2 Power-law Spectral Models

The modified Kolmogorov spectrum is defined in terms of the structure constant C3
and the inner ly and outer Lg scale sizes as

&, (k) = 0.033C%(k} + k*)""/®exp{—k?/k2}, (22)

6




where

kn = 5.92/l (23)
ky = 1/L,. (24)

The full wave vector is conveniently specified in terms of its transverse and axial com-
ponents as k = (K, k,). Bold-face symbols indicate vectors. The magnitudes of the
vector components will be indicated by the corresponding ordinary symbol. A problem
with (22) is that it does not admit a closed form for A(Ap). A more convenient form

was developed by Shkarofsky [5]. It will be used in a slightly modified form, which is
summarized in Table 2 of [6], namely,

-(v+1/3) a - :)
Q(g) = (2ra,ar)¥*[1 + (azg)? Ko1p2 (2% 1 + {ua)
4 . -

Koo (22)

where K, (z) is the modified Bessel function of fractional order. it will also be convenient
to define

(25)

K = /oqu(q)g,q;

[N
m%%% (26)

It can be shown that

Riy) = A(Bp)/A(0)
[ a(a)Qa)da/ [~ a@a)dq

Uik (2& 1+ 4

2 v-1/2 | 25 + 353

4'1+ v V) (27)
203 Kyoap2 (og...)

ar,

Thus, @, R or ®, and A have self-similar Fourier transforms.

For small values of z, K,_1(2z) ~ iT(v — 1)(a,/ag)™*'. For all applications of
interest, &, /at;, << 1. Thus, for ¢ << 1/, (25) simplifies to

3/2( -¥)](y -v-1/2
Qlg) ~ STtenl VAT 4 1/2) (-2— +q’) . (28)

v -1) al




Equation (28) can be put in the same form as (22) if (28) is first divided by (27)® to
maintain consistent 27 conventions. We then let ay, = v2L, and

2 (L) I(v +1/2)
<& SRy - 1)

= 0.033C2, (29)

or ,
3G, v - 1)
(v +1/2)g" ™"

where go = Lg! and C, = 0.033C2. By noting that A(0) = x <&®>, we can obtain a
consistent expression for D(y) or D,(y). The complete model is summarized in Table 1
in terms of the basic parameters C2, ly, Ly, and the 11/3 power, which corresponds to
v =4/3.

Figure 1 shows a comparison of the Kolmogorov and Shkarofsky spectra” forms for
a fixed inner scale of 1 cm and a typical outer scale range. The Shkarofsky model was
evaluated from Table 1. Standard subroutines were used to evaluate the Bersel and
gamma functions. It can be seen that significant differences occur only in the regime of
the inner scale cutoff. Because the detailed mathematical form in the dissipation regime
is not known precisely, these differences are unimportant. Figure 2 shows the Shkarofsky
form of the structure function as summarized in Table 1. Although the Shkarofsky

form is convenient for modeling, it can be unwieldy for analytic computation. Thus,
the approximations are often used.

In the iuertial subrange Ly < ¢ < Iy, 3, has the power-law form C—’,q‘“/?-, By

carefully evaluating limp,_,o, Dn(y) it can be shown that the structure function admits
the complementary power-law form

<miI>=

(30)

4x?C,I'(3/2 - v)
T'(v +1/2)(2v — 1)2%-2

D.(y) = y? L. (31)

Note that (31) does not depend on L,. Carrying out a Taylor series expansion of D,(y)

for small y, using (31) for intermediate y, and the saturation value of D,(y) for large
y, it follows that

( 4720 I(3/2-v)I2*~2 9

sp(,,_l/z)zzu-ly y<lh
Dn(y) = { 47‘-2@8P(u+ll/‘£§{22;—u]).)22y—2y2U'-I l() < y < LO . (32)

27 Tv—1/2
| 7o y> Lo

e
-



Evaluating the coeflicients for the Kolmogorov value v = 4/3, we obtain

’ 2.024031,’3 y < lo
0

Da(y) ~{ 2.913C2y%3 I, <y< Lo - (33)

| 1.563C2Ly"°  y> Lo

The asymptotic and saturation forms of (33) are idertical to the corresponding forms
from (20-78) in Ishimaru 7] when allowance is made for the factor of 2 difference between
A(0) — A(y) and D,(y) from (17). The small y form given by Ishimaru is about 62%
larger, which reflects the differences between the Shkarolsky and Kolmogorov forms.
Equation (33) is plotted in Figure 3. It can be seen that the quadratic and asymptotic

regimes are narrowly confined, and results based on these approximations must be
restricted accordingly.




e

Table 1. Summary of Shkarofsky Form of Modified Kolmogorov Spectrum.

Shkarofsky Model v =4/3

B_(q) =<én?> 22
@n(Q) —-<5n > o)

Q(q) = (27ra,aL)3/2w-(v+l/z) K (21

K, (2&
llL

4 2&.1‘!/—-]2 1-R - N ,
Dn(y) - _I_F#f/—{)Ll [ qou— ] CS - ()-0&5071

R(y) = my“l/“{u_m 23:@)

Ku-1p2 (Zfz-)
2 _ 72¢,T(v-1 -
<= 1‘_(1/—+T/_i2)?§":)5 qo = I
aL=\/§L0 a_,:lo/\/é
C(y) =<én®*> R(y)

10
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Figure 1. Comparison of Kolmogorov and Shkarofsky spectral models.
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IV MUTUAL COHERENCE FUNCTION

The results summarized in this section arc taken from Chapter 20-6 of Ishimaru [7},
where detailed derivations and an extensive bibliography can be found. As noted in
Section II, all solutions to the differential equation (8) derive their dependence on the
propagation medium from the structure function for the refractive index D,(y), where

y represents the magnitude of Ap. In a plane normal to the propagation direction, vue
structure function is isotropic.

The receiver coherence diameter, 7o, which is defined as the path separation in the
receiver plane over which the spatial cohierence of the complex field decreases by the
factor 7!, is a useful parameter for evaluating the effects of atmospheric turbulence.
In the current version of IMTURBI, an approximation to 7 is obtained by integrating
the local asymptotic value; however, with the Shkarofsky model it is a simple matier
to compute the exact coherence function.

IV.1 Plane and Spherical Waves

For a plane wave, the mittual coherence function is position-invariant and has already

been given by (21). For a spherical wave emanating from the origin of the reference
coordinate system, it can be shown that

1 k
T(Ap; pey2) = g expli—pe - Ap — H(Ap; 2)}, (34)
where
H(Ap; )—f:/'p( '2)d2! (35)
p)z - 2 0 € yz .

There is a deterministic dependence on position relative to the source that can be impor-
tant. The spreading loss is given by the z~? dependence, but this factor is conveniently
absorbed in the gain factors for the optical system of interest. The most important tur-
bulence effect for spherical waves is the variation in the effective coherence scale along
the integration path—the shower-glass effect. Regions of very high turbulence near the
source are not as troublesome as regions of moderate turbulence further along the path.

IV.2 Beam Waves

The fundamental quantity of interest is the complex wavefield u(r), but for narrow-angle
scatter it is convenient to introduce the modified wavefield

U(p, z) = u(r) exp{—ikz}. (36)

14




For a beam wave, .
U(p,0) = exp{—gkap’}, (37)
which has the two-dimensional Fourier transform

x K?

U(K,O) = 7::1— exp{—-m . (38)

Beyond the z = 0 plane,

Uier) = [ V. 0)exoliklo(K) - DabexpliK - phoSs

! ba £y (39)

1 +iaz

~o

To evaluate the integral, the narrow-angle scatter approximation g(K) = (/1 — (K/k)?* ~
1 — (i€/k)*/2 was used. It follows that

[U(p, 2)|* = (Wo/W(2))? exp{~20*/W*(2)}, (40)
where
W(z) = WEl(L - aiz)* + (a2 (41)

Ishimaru sets o, = 2/(kW}) and a; = 1/R,, whereby W(2z) achieves a minimum at
z = *1/Ry. Thus, the beam wavefield, which has initial size W, either converges to

a minimum at z = 1/R,y (focused) or diverges from a fictitious point at z = —1/R,
(unfocused).

Under the conditions of narrow-angle scatter and small local perturbations, the MCF
of an arbitrary wavefield admits the integral representation

M(Ap,p.2) = [[To(Ap—2Ku/kiKa0)exp{iKa- p.}

x exp{—~H(Ap ~ zKu/k; K4)} dKy, (42)
where 1
P(ps Kai0) = 7555 [ Tolpu i 0) expl~iKa - p.} dp, (43)
and "
H(Ap Ky) = -52- [ Dultp+ Kafk) a2 (44)

The quantity I'o(Ap, p.,0) represents the MCF of the incident wavefield at z = 0 in
terms of the sum variable p_ = (p; + p,)/2 and tle difference variable Ap = p, — p,.

15




For a plane wave, I'y(py, p.,0) = 1, which implies that
To(p4i K4, 0) = §(Ka)
independent of p;. Substituting (45) into (42) gives

kg ,
D(Ap, pey2) = exp{—7 [ Du(p) d2'),

(45)

(16)

which is independent of p_. The Ap dependence of the final result comes from 1/ (Ap;0).

For a spherical wave,

Un(p,z) = - explike?)(22)),
so that
Lo(Ap,p.;2) = % exp{ikp, - Ap/z}.
It is readily shown that
Mo Ka2) = S56(Ka = ko).
Taking the liniit as z — 0, it follows that

1
(0 Ki; 0) = 176(p).

Substituting (50) into (42) as before gives

I(Ap,p.;z) = xp{ikBp po/2)

k2 - , ,
= exp{—-;/0 D, (Ap2'[z)d2"}.

22
The leading term in (51) is the MCF for the spherical wave source.
For a beam wave, it follows from (37) that
Lo(Ap, p.,0) = exp{~kla, (o} + Ap*/4) +iaip, - Apl}.
Substituting (52) into (43) it follows by direct computation that

1 .
Lo(pg; Ku;0) = ——exp{—karpy/d — [Ku + kaipy]*/(1ke, )}

Furthermore,
Jim To(pg; Ka; 0) = (K + kaipy).

(47)

(48)

(52)

(53)

(54)

If a; = 0, we recover the plane-wave result. At the other extreme of large o; we have

1
(ka,-)"' 5(/):1)'

lim Fo(py; Ka; 0) =

16

(55)




IV.3 Small o, Approximation

For the moment, let us assume that we are free to make o, as small as we like. In that

case the integral of (42) with 'y defined by (53) can be evaluated by the saddle point
method. After some straighitforward manipulations we find that

L(Apipiz) =~ (Wo/W(2))exp{b?/(da) ~ cAp®}

K e
x exp{— /0 Do(Ap + (2 — 2)K4/k) d2', (56)
where

1 _ 2 2 (1 — oy2)?
a= 4ka,.((1 a;z)' +(a,2)") =~ BTV (57)

_ 1 2 . _ a,-(l - a,-z)
b= [2k(cs(1 - o2) — o22)Ap + dika,p.| =~ —=S—he (58)

k2, 2 kaj
¢= 4a'(ar + (1‘-) ~ ‘1(1') (59)
K% =—b/(2a) ~ ‘xbe (60)
1~ Q;iz

Upon substituting the approximate forms of (57), (58), (59), and (60) into (56), the
dependence on a, cancels and the result implied by (54) is obtained. The accuracy of
the saddle point method depends on

P(K) = exp{~5- [ D(8p + (' = (K3 + Ka)/b) &) (61)

varying slowly over K, regions such that |K4| << 1/a. A test of this condition can be

made upon evaluating the integral in (56). The three MCT forms are summarized in
Table 2.
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Table 2. Summary of mutual coherence function forms.

Wave Type I'(A p;p,; 2)

Plane exp{-—"—; J§ Dn(Ap)dz"}

Spherical ~ SRURALLL} eyt B e b (Apz'/z) dz')

Beam (WO/W(22)2 exp{b?/(4a) — cAp?}
X exp{-~% [F Do(Ap + (2 — 2)K5/k) d2'}

IV.4 Intensity Statistics

The fourth-order moment of the complex field satisfies a known differential equation,
which has received considerable attention over the past five years. Through nunierical
simulations, diagram methods, asymptotic expansions, and other techniques a detailed
understanding has emerged, but the most general results cannot yet be encoded into
simple formulas. For our purposes here, we shall restrict ourselves to single-frequency
two-point correlations, which are the direct extension of the mutual coherence function
analysis. For a single pi.- = screen, it can be shown [8, 9] that the spatial wavenumber
spectrum of the intensity 1. given by the integral

2,(K) = [ [ exp{=g(¢, KE)} cos(K - €) dt (62)

where
o(6,m) = 88%%, [ [ #(a,0)sin’(n- a/2sini(¢ - 0/2) 7%, (63)
1 = z/k, (64)

and I, is the path length as in Section III. The two-dimensional Fourier transform of
(63) gives the intensity correlation function; however, we shall be mainly interested in

the intensity moment
dK
2y F. . )
<I*> // B;(K) n) (65
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To remove the mean intensity, we define
o} =<I*> -1, (66)

which is strictly valid for plane waves but a good approximation for most applications.
If we substitute (22) into (63) and change variables, it can be shown that
2 exp{—(q¥m)’} . » 3 . dq
- X ) 7
g(f)Klj) 8U [7%'*“1’]11/8 sin”(Kly - q/2) sin®(¢ ‘1/(211)) (2n)?’ (67)

where

I = [k*,(0.033C%)/*
U = (4/L)"°

n = ki

Tm = (kml!)-l'

The main point here is that the behavior of the intensity statistics depends on two
length parameters, l;, which is the Fresnel radius, and I, which is close to the receiver
coherence diameter, and two ratio parameters, 4, and 7,,. If the parameters 4, and/or
Ym become large, the influence of the corresponding scale size becomes small. The
intensity statistics are well defined in the fractal limit where both the outer and inner
scale sizes are respectively infinity and zero. For optical turbulence effects, however,

the inner scale generally cannot be neglected.

For the moment, let us consider the fractal limit. If we replace I with [, such that

k*l,D,(l.) = 1, it can be shown [8] that

1
22U 38
where 1
U= EkzlpD,,(l,). (69)

The approximation is valid as long as U << 1. As U increases beyond this range, o# will
increase monotonically until it slightly exceeds unity and then will decrease to unity,
its saturation value. The effects of the inner scale are shown in Figure 1 of Whitman
and Beran [10]. The general effect is to shift the ,, = 0 curve to the right and increase
its amplitude. Simulations by Martin and Flatté [11] have shown that Whitman and
Beran’s calculations are about 15% too low, but the general shape is preserved. For
modeling purposes, it would not be too difficult to fit a simple functional form to the
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curves derived numerically or from simulations. For strong intensity fluctuation, we can
use the saturation result

<II'> -1 =~ exp{—-2H}, (70)

that is, we simply square the mutual coherence function. For weak intensity fluctuations
approximations based on

&;(K) =~ 4k, sin®(K*12/2)8,(K)) (1)

can be used.
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V Slow and Fast Integration Times

In a turbulent flow field, structures of different sizes travel at different speeds. Nonethe-
less, the dominant propagation effects come from larger scale structures that are essen-
tially frozen over the measurement integral. Thus, a long exposure image in the focal
plane of an optical system will tend to measure the ensemble average of the angular
deviation predicted by the MCF. Shorter sequential exposures tend to show sharper de-
tail that rearrange themselves slowly in time. Assuming that these displacements come
from the larger scale turbulent structures, one is motivated to define the short-term
MCF as a high-pass filtered version of its long-term form. The concept is an old one,

although it has no firm theoretical basis. The particular measure we have implemented
was proposed by Fante [12].

For isotropic turbulence, the correlation function and spectral density functions are
related by Hankel transforms. Thus, if

C(Ap) = 2r /0 " KJo(KAp)d(K)dK, (72)
then 1 e
$(K) = 5- [) ApC(Ap)Jo(KAp)dAp. (73)
It follows that
C(Bp) = 2r '/K " KJo(KAp)3(K)dK

= C(Ap)—2r /o ™ KI(KAp)B(K)dK. (74)

Because we have an analytic form for C(Ap), it is desirable to perform the filter oper-
ation in the spatial domain. It can be shown from (74) that

C.(8) = C(bp) - [~ APC(Ap)F(Bp, 05) dArp, (75)
where , * Ji(vVAp* + Ap™ —2ApAp'cos§) db
F(anbp) = Ko./; VBT + Ap” — 2Aphp cos  2x (76)
The short-term structure function can then be written as
D.(8p) = Da(Ap) - 05(C,(0) ~ C(Ap). (77)

The short-term correction to be applied to D,(Ap) to obtain D,(Ap) is obtained by
interpolating a precalculated set of offset curves. Prior to computing the offset curves,
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the structure functions are normalized to C3, which effectively reduces the dependence
on the structure constant to a scale factor. It was found that the dependence on the
inner scale is very weak, so that a nominal value of .5 cm could be used. The remaining
parameters are Ap, Lo, and Ko, which is expressed as a fraction of 2r/Lo. The effect
of changing Ko is similar to changing L, itself. Figure 4 shows a family of five D,
curves for Ko = 0.1, 0.25, 0.5, 2.0, and 3.0 times 21/ Ly. As the fast cutoff wavenumber

increases, the correlation at a fixed separation increases. This implies a sharper image,
which may be disp'aced.
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Figure 4. Structure function for fast integration times.
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VI Simulation of Imaging in Turbulence

VI.1 Background

The IMTURB coce provides quantitative system performance guidelines for imaging
systems operating in the turbulent atmospheric boundary layer, but it is very difficult to
design definitive validation tests for the model. Ideally, one would design experiments
that combined channel diagnostics with various measurements of image degradation.
Alternatively, numerical simulations can be used to provide preliminary checks for uni-
form propagation environments. This section describes a series of measurements that
were performed to test the short-term coherence function and beam-wander concepts.

VI.2 Propagation Model
The propagation of a spherical wave can be derived from the relation

==l ,expg:;gx)| I i - ) a2, (78)

which shows that i exp{ikg(K)|z|}/(2kg(K)) is the two-dimensional Fourier transform
of the outward-propagating spherical wave in a constant z plane. Forward propagation
to any other plane is achieved by applying the propagation factor exp{ikg(K)Az},
which simply extends the z component. Any attempt to approximate this relation
numerically, however, is futile because of the slow decay of the field. The integral itse'
is defined only in a special mathematical sense.

The problem can be avoided by using a divergent beam, which retains the phase
variation spherical wave but imposes a gaussian intensity profile. For a beam wave,

ka Pt
lpb(p’ ) - exp{zkz - 2 1 + laz} (79)
where a = a, + iq; with
2
% = (80)
1
c= L 81
= & ®1)

As discussed previously, the beam size at z = 0 is W, and Ry is the curvature of the
phase front. For a focused beam, the beam intensity spread reaches a minimum size wy
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at z ~ Ry. The beam size as a function of distance from this minimum is given by the
relation
22
W(z) = on 14 23, (82)

3wy

At large distances, the angular extent of the beam is A/(wwg). Thus, the beam is well

approximated numerically if the spatial wavenumber at the maximum angular deviation
is resolved. This leads to the sampling condition

Az << Twy /2. (83)

The number of points needed is determined by the size of the beam at the position
where the propagation disturbance is applied.

Following Martin and Flatté [4] we simulate the effects of strong turbulence by multi-
plying the beam field by a complex random field whose phase autocorrelation function
is given by 12 and 13 using the model summarized in Table 1. The location of the
phase screen is chosen so that the beam is well tapered over the finite extent of the
phase screen. We then propagate the distorted beam wavefield forward by performing
a Fourier transform and then multiplying each Fourier component by the propagation
factor exp{ikg( K )Az}. Strict adherence to the parabolic wave equation requires repeti-
tion of this process, but experience has shown that the field statistics well removed from
the phase screen are not significantly different if a single phase screen corresponding to
the total path-integrated disturbance is used.

In Martin and Flatté’s work, multiple phase screens were used, but they simulated
only the intensity of the scattered field. To simulate the blurring effects of the turbulence
in an image, we have numerically refocused the beam to z. This is accomplished by
back propagating the disturbed beam wavefield through the phase screen location to
the point of minimum beam diameter. The same FFT procedure is used to implement
the back propagation. In the absence of a phase disturbance, we obtain a small spot as
would be observed with a telescope pointed along a focused laser beam. Thus, we use
a focused 1.064 pm-beam with a 1-cm waist divcrging to approximately 30 cm at the

phase screen. The phase screen was placed approximately 2/3 of the distance from the
beam waist to the aperture plane.

Figures §, 6, and 7 show the effects of weak, moderate, and severe turbulence,
respectively. The structure constant and the path length within the disturbed medium
are listed in the figures. The distances are real units at the location of the beam
minimum. Each realization of the focused image can be thought of as an instantaneous
field sample as could be obtained, for example, by a video tape recording of the beam
focused on a screen. Long-term averages are obtained by incoherently averaging a large
number of realizations. Figures 1, 2, and 3 suggest, however, that the beam centroid is
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Figure 5. Focused beam simulation for weak turbulence.

near the origin, with very little deviation. We shall see in the next section that this is

indeed the case.
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VI.3 Summary Statistics

To summarize the average blurring effects or long-time images, we generated a large
number of independent realizations for several different turbulence levels and computed
standard measures of image degradation. The first moment and second central mo-
ment of the image intensity along the reference coordinate directions measure average
displacement and image spread, respectively. We also computed the autocorrelation
function of each image as a measure of its fine structure. Finally, we computed the
autocorrelation function of the average intensity of a large number of independent re-
alizations as a measure of the long-term average spot size.

As a measure of the potential effects of the turbulence, we compute the reciprocal of
the e~? decorrelation distance at the aperture plane for the theoretical mutual coherence
function. In the IMTURB code, the coherent spot diameter is inversely proportional
to the coherence scale. Thus, we have presented the simulation results in terms of the
reciprocal coherence scale. To provide a unitless measure, the coherence scale should

be normalized to the aperture size; however, only a single aperture size was used for
this set of simulations.

Figures 8, 9, 10, and 11 show the average of the measured first and second moments.
Because the turbulence is isotropic, we expect and observe no average displacement or
difference between the z and y cuts. Although the spread in the displacement increases
with increasing perturbation strength, the wander is much smaller than the average
spread. Thus, if the images were displayed sequentially, no beam wander would be
apparent. In ~“ort, the homogeneous turbulence model does not contain sufficient low

spatial-frequency content to account for the beam wander that is typically observed in
experiments.

The most interesting result is summarized in Figure 12, which shows the average
short- and long-term structure measures. The long-term beam size starts at twice the
focused spot size because of the autocorrelation function measure. As the turbulence
develops, however, the long-term beam size increases linearly against the inverse coher-
ence scale, as do the second moments shown in Figures 10 and 11. This confirms the

known inverse proportionality between the average focused spot size and the coherence
scale at the aperture plane.

The increase in the short-term structure size, however, is not linear with inverse
coherence scale. This is possibly due to Fresnel-radius effects, which are intimately part
of intensity fluctuations. In any case, we see that the short-term image coherence scale
increases at an increasing rate as a function of inverse coherence scale. It is well known
that short-term exposures can be refocused to remove the blurring with adaptive phase
compensation schemes. We suspect that the short-term coherence scale presented here
represents the best that can be achieved with such schemes. For example, in very strong
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Figure 8. Average beam displacement along z-axis.

turbulence, adaptive focusing can recover only about 50% of the diffraction limited
resolution. If this can be confirmed by simulating adaptive phase reconstruction, it will
provide an improved quantitative measure of the short-term spot size currently provided

by the IMTURB code.
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VII Conclusions and Recommendations

A consistently formulated propagation model has heen described for systems-oriented
predictive codes. The primary model inputs—the structure constant and the outer and
inner scale sizes—can be obtained from atmospheric turbulence models. In terms of
simple path integrals, the complete mutual coherence function for plane-waves, point
sources, and beams can be computed. Iu fact, the plane and point source limits are

special cases of the beam wave result. The model eliminates the restrictions imposed
by the Rytov approximation.

Because of the importance of image processing and adaptive compensation of at-
mospheric turbulence, we also implemented a consistent measure of the short-term
coherence scale. As with all previous measures, however, there is no firm theoretical
foundation for the result. Thus, we used numerical simulations to study the relation
between the long-term and short-term correlation scales. Moreover, in our introduc-
tory background material, we showed that any model based on the assumption of locally
homogeneous statistics eliminates phase wander that is inherently part of any real prop-
agation environment. Our simulations confirm that slow beam wander is not part of
standard homogeneous turbulence models. To the extent that it needs to be included
in predictive models, it must be accommodated explicitly.

More importantly, we developed a quantitative measure of the short-term intensity
coherence. We don’t know how to calculate the measure theoretically, but it could
easily be modeled empirically. As noted in Section VI, we believe that the short-term
coherence scale as we defined it is 2 quantitative measure of what can be achieved
by adaptive focusing. Future work should test this concept. Beyond that, further
improvements to the IMTURB code should be coordinated with field measurements.

In a separatec memorandum, we have described a simple and cost-effective laser diagnostic
system that could achieve this objective.
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Appendix

Optical Systems

Ultimately, the wave fields that have been characterized in this report are detected and
processed by an optical system. The performance of the optical system for its intended
purpose is critically dependent on its detailed configuration, but there are some aspects

that are common to all systems. In this appendix a general model that isolates these
common features is described.

A-I A Model for Optical /IR Imaging

Consider the general model shown in Figure Al. Any luminous object can be decom-
posed into a collection of effective point radiators, but for simplicity let O(£) represent
a collection of noninteracting point radiators that are visible to the optical system. Let
ASRg(p, &) represent the complex wave field in the aperture plane of the receiver from a
unit point radiator at £. For example, in free space,

aS3(p,¢) = Z2EL (41)
where
r= R+ 2R (p— &)+ |o— ¢ (42)

It follows from the linearity of Maxwell’s equations that the aperture-plane signal from
any extended luminous object can be represented by the integral

Sa(e) = [, ASk(p.)0(¢) dt. (43)

If the luminosity is broadband, (A3) must be integrated over the temporal frequency
spectrum, but the narrowband model is adequate to illustrate the linear systems ap-
proach. The complex signal Sg(p) over some finite aperture A is accessible to the

imaging system for processing. The form of (A3) is the general representation of a
spatially varying linear system.

The simplest optical system uses a collection of lenses that effectively apply phase
compensation for the propagation paihs to p from each point in the object space, &.
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Figure Al. Geometry for general imaging model.

This operation can be represented mathematically as

V(g) = | Sa(p)exp{i¥n(p, o)} dp
L[ 25500, 00(6) dé explialo, o)} dp. (44)

The second form is obtained by substitution from (A3). Changing the order of integra-
tion in (A4) gives the linear systems representation

V)= [ M )0 d (45)

bject
where

M(¢, &) = | ASa(p, &) explivnlp, o)} dp (46)
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is the complex point spread function for the imaging system. For an ideal system,
M(€, &) = §(€ — ) times an arbitrary phase constant.

Over at least a limited portion of the receiving aperture, the point spread function of
a good imaging system will depend only on the difference between the object and target
coordinates. Thus, the first step in any imaging process is mathematically equivalent
to applying a homogeneous spatial filter to the object illumination. The differences
between coherent and incoherent systems manifest themselves in the characteristics of
the image intensity, particularly its temporal and spatial coherence properties. In all

cases, however, if propagation disturbances are present, the point response function
itself acquires a random time-varying component.

A-II Propagation Disturbances in Optical Systems

To identify the random component induced by the propagation disturbances explicitly,
let

ASa(p,€) = Hr(p, E)ASY(p ). (A7)

Now consider an object whose luminosity is uncorrelated from point to point and inde-
pendent of the propagation disturbance. It follows from (A5) that

A(e)>= [

objec

: <|M(€»£0)|2><IO(§)I2> df) (A8)

where the angle brackets denote ensemble averaging. Similarly, from (A6) it follows
that

<AM(E)> = [ [ <Halp, OHi(P',)> ASH(p, A5 (5,8)
x exp{ilia(p, o) ~ al(e' )]} dodp', (49)

Because R >> p or £, (A2) can be expanded to terms that are quadratic in R™?,
whereby

AS3(p, §)ASY(¢',€) ~ exp{—ikArp - ¢/ R}, (410)

to terms that do not depend on ¢ or are quadratic in £/v/R. For an imaging system,
there is a similar relation for 95 with R replaced by 2f, where f is the focal length.
Also, in Section III.1 we showed that

I(Ap; ¢, R) =<Hn(p, €)Hg(p',€)> ASa(p,£)ASY (¢, ), (A11)
so that

<Hn(p, €)H3(¢',€)>= exp{~H(p,&; R)}. (412)
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Here we have allowed for a weak dependence of H(Ap,§; R) on §. If this dependence
is neglected, the propagation disturbance is isoplanatic. Finally, we define the function
W(p) to be unity on A and zero elsewhere and introduce the new variables

n = k{/R (A13)
wo = k&/(2f). (A14)

With these definitions and approximations, it follows that

<M(n,m)>w [ F(Ap)exp{~H(Ap,aR/k; R)} exp{~ifp- Dn}dBp,  (A15)

where

F(8p) = [W(x+Ap)W(x— 8p)d. (A16)

If there is no propagation disturbance, H = 1, and from (A15) we see that the point
spread function M(An), which is no longer random, and F(Ap) form a Fourier transform
pair. Analogous to the impulse response-transfer function relation for linear filters,
F(Ap) is called the modulation transfer function (MTF) for the optical system. Note

that Goodman [13] uses the terminology optical transfer function. If the disturbance is
isoplanatic, we can define an average MTF as

<F(Ap)>= F(Ap)exp{—H(Ap; R)}. (417)

Equation (A17) is the long-exposute MTF for an optical system—see Fried’s equations
(3.15) and (3.16)[14].

With short exposures it is well known that one obtains a sharper image that is
displaced from its center point. It is mainly the slow meandering of the diffracted beam
that contributes to the blurring of a point image. To estimate the short exposure MTF,
it is clear that one should apply a high-pass spatial filter to (A7) before performing the
ensemble average in (A6). Unfortunately, this does not yield mathematically tractable
results, and various other schemes have been used. Fante [15, 12], for example, has
modified the lower limit of integration in (17) from 0 to yAp/D, where y = 1, and D is
the size of the largest unresolved eddy, but he remains skeptical of the procedure [16}.
Fried |14] removes the least-squares estimate of the linear-phase component; however,
the general area of tilt correction merits a more thorough treatment. At the present
time, however, there is no satisfactory analytical approximation for the short-term MTF.
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